当前位置: 华文问答 > 科学

为什么耳机塞紧了低音更明显?

2014-07-10科学

在耳机塞紧与外界几乎无连通的情况下,人耳接收到的声压大小与扬声器单元振动体积位移成正比;有泄漏的情况下,人耳接收到的声压大小与扬声器单元振动体积速度成正比;泄露严重或者说类似音箱辐射的情况,人耳接收到的声压大小与扬声器单元振动体积加速度成正比。

为便于解释,不考虑扬声器在不同泄漏情况下振动的变化(其实是变化的,但不影响结论),即振幅不变。扬声器单元振动体积位移=体积速度/角频率=体积加速度/角频率的平方,所以塞紧的情况下低频加重了。附图为耳塞式(earbud)耳机不同泄漏程度的频响曲线对比,非常明显。另一个图展示了泄漏的来源。



下面用一个类比来说得更形象一些:

耳机发声-人耳接收这个过程可以看作是用手堵住针筒的出口。针筒的活塞相当于耳机的扬声器单元,手覆盖在出口处的皮肤相当于鼓膜。如果针筒不漏气,那么推动针筒活塞压缩筒内的空气,手覆盖在出口处就能感受到压力的增加,活塞被推动了多少,压力就上升多少。如果针筒漏气,那缓慢推动活塞,并不会增加针筒内的压力,手也就感觉不到压力的变化;而快速推动活塞,尽管漏气,手依然能感受到压力的变化。换句话说,针筒漏气时活塞的运动要更剧烈才能引起针筒内压力的变化,并让覆盖在出口处的手感受到这种变化。

P.S. 以上解释为便于说明做了简化,不够严格,有兴趣的可以自己学习。

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

鉴于看到很多朋友并不了解耳机和音箱的差别在哪里,我这里还是贴几幅图展示一下基本原理,感兴趣的朋友可以看看:

首先是音箱在自由场中的声压。如图中公式所示, 音箱在某点产生的声压p是正比于体积加速度VolAcc的, 同时注意看单极子辐射的是球面波,声压大小与距离成反比。

再来看耳机在耳道中工作的简化模型。此时的情况形同一个无泄漏的压力室(pressure chamber), 内部的声压p正比于体积位移S*x, 并且注意pressure chamber内的声压在长波近似下是均匀的,而不像自由场是随距离几何衰减的。如果存在泄漏的话,近似正比于体积速度。

因此耳机和音箱的工作方式还是有很大差别的,这也造成二者在设计原则上和评价上都存在差别。最后再贴一张表格,是耳机和音箱的一些基本概念的阐述和对比,

注:上面几幅截图引自 C. A. Poldy. Tutorial AES 120, Paris, May 2006 - Headphone fundamentals