目前人工智能的深度学习算法是建立在大数据的基础上的,人工智能在工作过程中首先要对大数据进行挖掘,然后再利用大数据训练人工智能模型。
人工智能的发展经历了三个历程。从符合主义到连接主义再到行为主义。符号主义主要是用公理和逻辑体系搭建一套人工智能系统。连接主义源于仿生学,主张模仿人类的神经元,用神经网络的连接机制连接人工智能。行为主义控制论意为假设智能取决于感知和行动。三大流派日趋融合,协同发展,人工智能的核心特征之一是「关系」。
人工智能模型和算法发展的七大趋势:
趋势一、向无监督的方向发展。 主要表现为:适应「小数据」,减少标注需求,减少计算开销。要向无监督方向发展要经历几个阶段。人工智能主动学习阶段,算法主动提出标注请求,将一些经过筛选的数据提交给专家标注。迁移学习阶段,增强训练好的模型,解决目标领域中仅有的少量有标签样本数据的问题。强化学习阶段,用agents构成系统来描述行为并给予评价和反馈学习。
趋势二、可解释(XAI)越来越重要。 深度学习如何进一步设计算法和参数,提高泛化能力,